
Electron self-energy near a nematic quantum critical point

Markus Garst1,2 and Andrey V. Chubukov3

1Institut fur Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
2Physik Department, Technische Universität München, 85748 Garching, Germany

3Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706-1390, USA
�Received 12 March 2010; published 7 June 2010�

We consider an isotropic Fermi liquid in two dimensions near the n=2 Pomeranchuk instability in the charge
channel. The order parameter is a quadrupolar stress tensor with two bosonic shear modes with polarizations
longitudinal and transverse to the quadrupolar momentum tensor. Longitudinal and transverse bosonic modes
are characterized by dynamical exponents z� =3 and z�=2, respectively. Previous studies have found that such
a system exhibits multiscale quantum criticality with two different energy scales ���−z�,�, where � is the
correlation length. We study the impact of the multiple energy scales on the electron Green’s function. The
interaction with the critical z� =3 mode is known to give rise to a local self-energy that develops a non-Fermi-
liquid form, ������2/3 for frequencies larger than the energy scale ���−3. We find that the exchange of
transverse z�=2 fluctuations leads to logarithmically singular renormalizations of the quasiparticle residue Z
and the vertex �. We derive and solve renormalization-group equations for the flow of Z and �, and show that
the system develops an anomalous dimension at the nematic quantum critical point �QCP�. As a result, the
spectral function at a fixed � and varying k has a non-Lorentzian form. Away from the QCP, we find that the
flow of Z is cut at the energy scale �FL��−1, associated with the z=1 dynamics of electrons. The z�=2 energy
scale, ���−2, affects the flow of Z only if one includes into the theory self-interaction of transverse
fluctuations.
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I. INTRODUCTION

The behavior of Fermi liquids �FL� near Pomeranchuk
instabilities attracted high interest in the last few years be-
cause of a generic theoretical interest and potential applica-
tions for the cuprates1 and ruthenates.2 In the FL notations, a
Pomeranchuk instability occurs when one of the harmonics
ga,n of the Landau quasiparticle interaction function ap-
proaches −1 �a=c ,s stands for charge or spin and n is the
value of the angular momentum�. Examples of Pomeranchuk
instabilities include phase separation �gc,0=−1�, a ferromag-
netic transition �gs,0=−1�, at which the Fermi surfaces �FS�
of spin-up and spin-down fermions split apart, and nematic-
type transitions in the charge3–14 and spin channels,15–17

which lower the rotational symmetry of the FS.
The subject of this paper is the d-wave �n=2� charge

nematic instability in an isotropic Fermi liquid at T=0, i.e., a
charge nematic quantum critical point �QCP�. A charge Po-
meranchuk instability in the d-wave charge channel was first
introduced by Halboth and Metzner,3 and Yamase and
Kohno4 in the context of the RG analysis of potential insta-
bilities of a two-dimensional �2D� Hubbard model. The
d-wave instability in an isotropic system was analyzed by
Oganesyan et al.5 and in a number of later papers.7–13 The
order parameter for a d-wave charge nematic transition is the
expectation value of the quadrupolar electron density
c�

†Qijc�, where Qij =�ij�
2−2�i� j and i , j=x ,y. It can be in-

terpreted as a traceless quadrupolar stress tensor representing
elastic shear modes of the FS �Refs. 5 and 12�. In spatial
dimensions d=2, there exist two bosonic shear modes with
polarizations longitudinal and transverse to the quadrupolar
momentum tensor �cos 2� and sin 2� terms�. These two
modes are characterized by different dynamics.5 The longi-

tudinal mode is Landau overdamped by particle-hole pairs
and has a dynamical exponent z� =3. The transverse mode, on
the other hand, remains undamped with z�=2. Each mode
has an associated “bosonic mass-shell” energy scale, �FL

�

��−z� and �FL
� ��−z�, related to the correlation length, �. The

nematic instability is thus a quantum phase transition with
multiple energy scales.

Multiscale criticality of the nematic transition was re-
cently analyzed by Zacharias et al. �Ref. 12� within a
bosonic Ginzburg-Landau �4 theory. These authors consid-
ered the interplay of the two modes and the resulting mani-
festations of the multiple energy scales in thermodynamics.
Longitudinal fluctuations have larger dynamical exponent,
z� =3, i.e., larger phase space, and dominate the critical spe-
cific heat C�T�, which undergoes a crossover from a FL be-
havior at T	�FL

� to C�T��T2/3 for T
�FL
� . Transverse fluc-

tuations with z�=2 have smaller phase space and account
only for subleading corrections to C�T�. At the same time,
the effective dimension of the transverse mode d+z�=4 is
upper critical and its self-interaction gives rise to singular
logarithmic corrections to thermodynamics. As a result, criti-
cal thermodynamics becomes sensitive to the second energy
scale �FL

� as well. In particular, Zacharias et al. argued that
the temperature dependence of the correlation length �
changes qualitatively at a temperature T��FL

� .
In the present work we evaluate the electron self-energy,

��k ,�m�, close to the nematic transition focusing on the in-
teraction with transverse fluctuations. The self-energy correc-
tion, ��, due to the exchange of longitudinal bosons has been
calculated earlier.5–7,10,13 Its most singular part only depends
on frequency and is thus purely local. For frequencies ��m�
	�FL

� , �� is linear in �m as for a FL liquid but obeys
����m���m

2/3 for higher frequencies. The �m
2/3 behavior of
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the self-energy is directly related to T2/3 behavior of the spe-
cific heat. Recent advanced studies of longitudinal fluctua-
tions at a nematic transition found that �i� there is infinite
number of �m

2/3 terms with relative coefficients O�1�, even if
the theory is extended to large N �the planar diagrams, Ref.
18� such that there is no guarantee that �m

2/3 behavior sur-
vives, and �ii� there are singular logarithmical corrections at
third and higher orders of the loop expansion.19,20 In this
paper we show that another set of logarithmically singular
corrections arises already in lowest loop order due to inter-
action with transverse fluctuations. We show that the latter
renormalizes the residue of the fermionic propagator contrib-
uting to the anomalous dimension for the fermions.

The issue of renormalizations by transverse fluctuations is
tricky. As the contribution of the transverse fluctuations to
C�T� is negligible except for the renormalization of the cor-
relation length, one might expect that the electron self-
energy remains unaffected by the interaction with the trans-
verse mode. Indeed, we find that the self-energy is smooth at
the transverse “mass-shell” energy scale �FL

� . We argue,
however, that the interaction of electrons with transverse
fluctuations brings about a third energy scale �FL�vF�−1,
where vF is the Fermi velocity. This scale corresponds to z
=1 fermionic excitations near a fermionic mass shell. We
find that above this scale the exchange of transverse bosons
gives rise to a singular logarithmic correction to the residue
Z of the electron Green’s function. Summing up the leading
logarithmic contributions, we obtain that they exponentiate
and contribute to an anomalous dimension if the distance to
the fermionic mass shell exceeds this third energy scale �FL.
At criticality, �FL=0 and at any distance to the fermionic
mass shell, the electron Green’s function then acquires the
form

G�k,�m� �
1

�i sign �m��m�2/3�0
1/3 − �k�1−� , �1.1�

where �0�EF / �kFa�4, EF and kF is the Fermi energy and
momentum, respectively, and a is a quadrupolar scattering
length. The anomalous dimension, �, at one-loop order is
attributed to the transversal fluctuations, �1L=��, and we
find ��=1 / �2kFa�.

In order to keep our calculations under control we as-
sumed that the interaction is sufficiently long-ranged in real
space such that a is much larger than the inverse average
distance between particles, i.e., kFa1, so that �� is small.
It was shown by Metlitski and Sachdev,19 and Mross et al.20

that the longitudinal fluctuations also contribute to the
anomalous dimension, �, but this contribution appears at
third loop order and is beyond the accuracy of the present
study.

The singular behavior of Z affects the spectral function
A�k ,��, particularly the momentum-distribution curve
�MDC� measured in ARPES experiments at a fixed, small �
and varying momentum k. In the presence of a singular fer-
mionic residue Z, the momentum tails of the MDC are no
longer of Lorentzian, 1 /�k

2 form, but rather behave as

A�k,�� �
���2/3

��k�2−� at ��k�  ���2/3�0
1/3. �1.2�

This is the experimentally detectable prediction of the theory.
The input for our calculations is the assumption that a

nematic critical point does exist, i.e., that there is no pre-
emptive instability at some finite correlation length �. A pre-
emptive pairing instability is always a possibility but the
corresponding Tc is generally quite low.21 Metlitski and
Sachdev19 pointed out another potential pre-emptive instabil-
ity: a nonsingular correction to the q2 momentum depen-
dence of the static bosonic propagator �which is the same in
longitudinal and transverse channels� is large in the large N
limit and may lead to a spiral-type instability already at a
finite �.22 This issue was further discussed by Mross et al.20

who demonstrated that such a correction is small and under
control if the static bosonic propagator has the form 1 /q1+�

instead of 1 /q2, and � is small �the nontrivial limit consid-
ered in Ref. 20 is ��1,N1,�N=O�1��. We assume in this
paper that the regime of small � extends to �=1 and N=1,
i.e, that there is no pre-emptive spiral-type instability.

The paper is organized as follows. In the next section we
introduce the effective fermion-boson model for the charge
nematic quantum critical point. In Sec. III we analyze the
renormalizations arising from the exchange of longitudinal
fluctuations and particularly focus on how the longitudinal
mode influences the dynamics of the transverse fluctuations.
In Sec. IV we consider the renormalizations due to transverse
fluctuations and derive the result for the transverse self-
energy that leads to Eq. �1.1�. The paper concludes with a
summary and discussion of the results.

II. FERMION-BOSON MODEL FOR THE CHARGE
NEMATIC QUANTUM CRITICAL POINT

Effective fermion-boson models near quantum critical
points have been discussed in the literature for
nematic5,7,10,12 and other17,23 cases, and we simply state the
result: the proper low-energy theory near a charge QCP is
obtained by integrating out high-energy degrees of freedom
and is described by an effective Hamiltonian with a four-
fermion interaction mediated by a static propagator of soft
bosons. This reflects the fact that the transition itself and the
propagator of soft static bosons are produced by fermions
with high energies, of order EF. The fermionic self-energy
��k ,�m� is sensitive to the dynamics of bosons, which by
virtue of an energy-conservation law comes from low-energy
fermions and has to be calculated within the low-energy
model, self-consistently with ��k ,�m�.

Because there are two soft boson modes near a nematic
transition in d=2, the low-energy theory is a trace of a 2
�2 matrix.5,12 Nondiagonal terms of this matrix do not play
a role near a QCP and we neglect them. The two diagonal
terms describe interactions mediated by longitudinal and
transverse bosons and are given by

H� = �
k,p,q

�st�q�dk,q
� dp,q

� ck+q/2,�
† cp−q/2,�

† cp+q/2,�ck−q/2,�,

�2.1�
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H� = �
k,p,q

�st�q�dk,q
� dp,q

� ck+q/2,�
† cp−q/2,�

† cp+q/2,�ck−q/2,�,

�2.2�

where

dk,q
� = 	2 cos�2�k,q�, dk,q

� = 	2 sin�2�k,q� �2.3�

are “d-wave” form factors, and the angles, �k,q= � �k ,q�
and �p,q= � �p ,q�, are between the bosonic momentum q
and the two fermionic momenta, k and p, respectively. We
assume, as in earlier works17,23 that the static bosonic propa-
gator �st�q� is analytic at small q and is given by

�st�q� =
�0

1 + gc,2 + �aq�2 + ¯

, �2.4�

where �0 is the product of the square of electron-boson cou-
pling and the 2D electron density of states, �=m /�, �within
random-phase approximation,13 �0=1 /�, and for simplicity
we assume below that this holds, i.e., �0�=1�. As we already
mentioned above, we assume that the effective quadrupole
interaction is sufficiently long-ranged in real space so that we
can treat 1 / �kFa� as a small parameter.

The nematic instability occurs when the Landau param-
eter gc,2 in Eq. �2.4� reaches −1. Using Eq. �2.4�, we can
introduce a correlation length

� =
a

	1 + gc,2

. �2.5�

It diverges as the transition is approached, gc,2→−1.

Dynamics of critical nematic fluctuations

The polarization of electrons gives rise to a retardation of
the effective interaction, and, as a result, the susceptibilities
in Eqs. �2.1� and �2.2� acquire dynamic parts

���q,�m� =
1

�

1

1 + gc,2 + �aq�2 + ����q,�m�/�
, �2.6�

where �= �, �, and the dynamic part of the polarization
bubble is defined as ����q ,�m�=���q ,�m�−���q ,0�. The
polarizations for free electrons are given by

��
�0��q,�m� =

1

�
�

k,�m,�
�dk,q

� �2G0,k+q/2,�m+�m/2G0,k−q/2,�m−�m/2,

�2.7�

where G0
−1�k ,�m�= i�m−�k is the bare electron Green’s func-

tion, see Fig. 1. Interestingly, the dynamics distinguishes be-
tween fluctuations that are longitudinal or transverse to the
quadrupolar momentum tensor of the electrons.5 To see this,

it is convenient to integrate first over �k. The requirement
that the poles of the two Green’s functions have to be in
different half-planes for the �k integration automatically re-
stricts the integration over fermionic frequency, �m, to a
range of the size of the external bosonic frequency �m. The
dynamical ��� then takes the form

���
�0��q,�m� = �

i�m

vFq
F�
 i�m

vFq
� , �2.8�

where the functions F� are defined as

F��s� = �
−�

� d�k,q

2�

�dk,q
� �2

s − cos �k,q
. �2.9�

Evaluating the angular integrals one obtains

F��s� = − 2�2s2 − 1�
2s +
1 − 2s2

1 + s
	s + 1

s − 1
� , �2.10�

F��s� = − 4s
1 − 2s2 + 2s�s − 1�	s + 1

s − 1
� . �2.11�

At small s

F��s� = − 2i sign�Im s� + 4s + ¯ , �2.12�

F��s� = − 4s − 8is2 sign�Im s� + ¯ . �2.13�

Both F��s� and F��s� contain branch cuts originating from
the pole in Eq. �2.8�. In the longitudinal case, the branch-cut
nonanalyticity determines the leading behavior in the limit
��m��vFq: F��s�−2i sign�Im s�, giving rise to a dynami-
cal term ��m� / �vFq� in ���

�0��q ,�m�, characteristic for Lan-
dau damping. For the transversal polarization, on the other
hand, the small frequency limit is analytic: F��s�−4s be-
cause the transverse form factor dk,q

� =	2 sin�2�k,q� vanishes
when both electrons are on mass shell, i.e., �k,q� /2. This
limiting behavior can be directly obtained from Eq. �2.9� by
expanding the integrand to first order in s, corresponding to
the approximation of a quasistatic virtual particle-hole pair.
The angular integral in Eq. �2.9� then averages the direction
of the center-of-mass momentum of the pair, k, over the FS.
As a result, the �m dependence of the transverse polarization
���

�0��q ,�m� starts quadratically in frequency, ��m / �vFq��2.
The branch cut of Eq. �2.11� yields a damping term in
���

�0��q ,�m� only at the third order in �m / �vFq�. This damp-
ing term then can be safely neglected in the critical scaling
limit ��m�� �vFq�.

The lowest-order polarizations thus yield different dy-
namics for the transverse and longitudinal susceptibilities in
the limit ��m��vFq

�0��q,�m� =
1

�

1

1 + gc,2 + �aq�2 + 2
��m�
vFq

, �2.14�

(a) (b)

FIG. 1. Lowest order �a� transverse, ��, and �b� longitudinal,
��, polarizations.
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�0��q,�m� =
1

�

1

1 + gc,2 + �aq�2 + 4
�m

2

�vFq�2

. �2.15�

As a consequence, the theory close to quantum criticality is
characterized by multiple dynamical exponents z.5 Whereas
the nonanalytic �m dependence of the longitudinal mode
corresponds to Landau damping characterized by an expo-
nent z� =3, the transversal mode is instead propagating with
z�=2.

III. LONGITUDINAL FLUCTUATIONS

When electrons scatter off critical nematic fluctuations,
singular FL corrections arise. In the present section we con-
centrate on the exchange of longitudinal fluctuations. We first
briefly review the results for the “longitudinal” self-energy
and then discuss how singular self-energy and vertex correc-
tions due to longitudinal fluctuations affect the polarizations
���. Of our particular interest here is the renormalization of
the transverse ��� which we then use to calculate the
“transverse” self-energy, which is the main subject of our
work.

A. Longitudinal self-energy

The one-loop electronic self-energy arising from the ex-
change of a longitudinal boson, see Fig. 2�a�, has been cal-
culated before.5,6,13 For completeness, we repeat the result
here

���k,�m� = −
1

�
�

q,�m

�dk+q/2,q
� �2G0,k+q,�m+�m

�0�,q,�m
.

�3.1�

Neglecting in the form factor d� the bosonic momentum q
compared to the fermionic k and expanding the denominator
of G0 in Eq. �3.1� up to first order in q, the self-energy takes
the form

���k,�m� = − �
0

� dqq

2�
�

−�

� d�m

2�

�0��q,�m�
vFq

� F�� i��m + �m� − �k

vFq
� , �3.2�

where F��s� is given by Eq. �2.10�. The behavior of
���k ,�m� at low energies is determined by the limiting be-
havior of the F� for small argument: F��s�−2i sign�Im s�.

Substituting this form, we obtain the local self-energy
����m�, independent of momentum k

����m� = ��i�m if ��m� 	 �FL
�

i sign ��m���m�2/3�0
1/3 if ��m� 
 �FL

� ,
�

�3.3�

where �0�EF / �kFa�4. At small frequencies, �� has a Fermi-
liquid form with the prefactor

� =
1

2�kFa�	1 + gc,2

=
�

2kFa2 �3.4�

that diverges at criticality. This FL frequency range shrinks,
upon approaching criticality, as

�FL
� �

EF

�kFa�4�3 � �−3. �3.5�

The dependence �FL
�

��−3 is characteristic for z� =3 dynam-
ics. For frequencies ��m�
�FL

� , the exchange of a longitudi-
nal boson leads to a non-Fermi liquid, �m

2/3 form of the self-
energy.

The momentum-dependent part of �� comes from higher
terms in the expansion of F��s� in s in Eq. �3.2� and is regu-
lar, ���k ,�m=0���k, and the prefactor is small in 1 / �kFa�.13

Three-loop diagrams give rise to �k log �k terms in the self-
energy and eventually have to be taken into
consideration.19,20 For simplicity, we restrict ourselves here
to the one-loop longitudinal self-energy Eq. �3.3�. Within this
approximation the electron Green’s function dressed by lon-
gitudinal fluctuations reads

G��k,�m� =
1

i�m + ����m� − �k
=

Z�

i�m − kF�k − kF�/m�
,

�3.6�

where by virtue of purely local ����m�, Z� =m /m�= �1
+�����m� /��i�m��−1. In the FL regime, Z� =m /m�=1 / �1
+��, in the non-FL regime �
�FL

� , both Z� and m� /m be-
come functions of frequency.

B. Renormalization of the polarizations

The lowest-order longitudinal self-energy in Eq. �3.3� im-
plies the breakdown of the FL close to quantum criticality.
The question arises as to how this singular FL correction
feeds back into the polarizations and thus modifies the dy-
namics of the boson propagators, Eqs. �2.14� and �2.15�.

Previous studies have established that the Landau damp-
ing term of the longitudinal propagator is robust against
dressing by longitudinal bosons by two reasons.13 First,
dressing fermions in the polarization bubble by longitudinal
self-energy adds to the ��m� / �vFq� term the overall factor
�Z�m� /m�2, which remains equal to one even when Z� van-
ishes and m� /m diverges. Second, vertex corrections need to
be evaluated at k=kF, �m=�m=0, and q→0, because the
Landau damping term is the leading term in an expansion in
�m /q. In this limit, vertex corrections are small in 1 / �kFa�
and are thus irrelevant. As a result, the Landau damping re-
mains unmodified.

(a) (b)

FIG. 2. Lowest order �a� self-energy and �b� vertex correction
due to the exchange of a longitudinal boson �dashed line�. The curly
line at the vertex represents either a longitudinal or a transverse
boson.
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The situation is more tricky for the polarization of the
transverse bosons. The dressing of fermions in the transver-
sal polarization �� yields for the dynamical �m

2 / �vFq�2 term
an extra factor Z�

2�m� /m�3=1+� which diverges upon ap-
proaching the QCP.10 At the QCP, the transverse bubble
evaluated with dressed fermions has a nonanalytic
��m�5/3 / �vFq�2 form. Simultaneously, however, vertex cor-
rections become relevant because in, e.g., FL regime, the
leading vertex correction at small but finite ��m is ��
��m / �vFq cos ��. The integrand of �� in Eq. �2.9� also
contains �m sin2 2� / �vFq cos �� term, and the product of
the two yields �m

2 / �vFq�2 term in ���, which has the same
functional form as the term coming from the renormaliza-
tions of the electron propagators.

This interplay between vertex renormalizations and dress-
ing up of fermions �i.e., self-energy corrections� has been
considered perturbatively by Zacharias et al. �Ref. 12�. They
explicitly computed one-loop self-energy and vertex correc-
tion terms with the assumption that the curvature of the FS
can be neglected. They found that these two corrections ex-
actly cancel each other, i.e., ��� preserves the same form as
for free fermions. This cancellation is a somewhat unex-
pected result. Vertex and self-energy corrections do cancel
each other exactly in the opposite limit q=0 and �m→0, as
required by the Ward identity associated with the conserva-
tion of the particle number. However, there is no generic
requirement that there must be a cancellation at arbitrary
�m / �vFq�, and, in particular, at ��m� /vFq�1. Yet, a very
similar cancellation between self-energy and vertex correc-
tions to the polarization bubble at small �m / �vFq� has been
reported by Kim et al.24 for the problem of fermions coupled
to gauge fluctuations.

Below we reconsider this problem with particular empha-
sis on the role of the curvature of the FS and higher-order
terms. Although our primary interest is the transverse polar-
ization, for completeness we present calculations for both
transverse and longitudinal bubbles. For the transverse
bubble, we show that singular self-energy and vertex correc-
tions cancel, in agreement with Ref. 12, and the fully renor-
malized dynamical ��� preserves the same �m

2 / �vFq�2 form
as the bare ���. Moreover, the renormalization of the pref-
actor is small in 1 / �kFa�. For longitudinal polarization, we
indeed find that the leading Landau-damping term is not
renormalized. The subleading, �m

2 / �vFq�2 term is renormal-
ized but the renormalization is again small in 1 / �kFa�. These
results mean that both longitudinal and transverse fluctua-
tions maintain their FL form and are robust against polariza-
tions. In the following, we first consider ��� in the small
�m / �vFq� limit. It turns out that in this limit, ��� is obtained
by a systematic perturbative loop expansion. In a second
step, we evaluate ��� in the FL regime for an arbitrary value
of �m / �vFq�, by summing up ladder series of vertex correc-
tion diagrams.

1. Polarization dressed with longitudinal fluctuations,
small Ωm Õ (vFq)

We first evaluate the polarizations in Fig. 1 with the renor-
malized electron Green’s function, Eq. �3.6�. Substituting Eq.

�3.6� into Eq. �2.7� and integrating over momenta transverse
to the FS we obtain, instead of Eq. �2.8�

���
R�3a��q,�m� =

i�

vFq
�

−�m/2

�m/2

d�mF�
E�m,�m

vFq
�

= i��
−�m/2

�m/2

d�m�
−�

� d�k,q

2�

�
�dk,q

� �2

E�m,�m
− vFq cos �k,q

, �3.7�

where we introduced the abbreviation E�m,�m
= i�m

+���m+�m/2−���m−�m/2 and the index R indicates that dressed
electron Green’s functions, G�, are used.

It is convenient to subtract from this expression the bare
polarization ���

�0� evaluated with the undressed Green’s
functions. The difference is

���
R�3a��q,�m� − ���

�0��q,�m�

= −
i�

vFq
�

−�m/2

�m/2

d�m�
−�

� d�k,q

2�
�dk,q

� �2

�
���m+�m/2 − ���m−�m/2

�E�m,�m
− vFq cos �k,q��i�m − vFq cos �k,q�

. �3.8�

At small �m / �vFq� �or, more accurately, at small
E�m,�m

/ �vFq��, the frequency-dependent terms in the de-
nominator can be neglected, and evaluating the integral over
�k,q we obtain

���
R�3a��q,�m� − ���

�0��q,�m�

= b�

4i�

�vFq�2�
−�m/2

�m/2

d�m����m+�m/2 − ���m−�m/2� , �3.9�

where b� =1 and b�=−1.
This correction can in fact be attributed to the perturbative

diagram presented in Fig. 3�a�. Evaluating the frequency in-
tegral, we find that in the FL regime ��m���FL

� , the integral
in Eq. �3.9� is of order ��m

2 / �vFq�2 and at larger ��m�
�FL

� it is of order ��m�5/3 / �vFq�2. Whereas such a nonana-
lytic correction is only subleading for the longitudinal polar-
ization, it would dominate over the �m

2 / �vFq�2 term of the

(a) (b)

FIG. 3. Lowest order �a� self-energy and �b� vertex correction to
the polarizations from the exchange of a longitudinal boson �dashed
line�. The outgoing curly lines represent either a longitudinal or
transverse boson for the respective ��. Diagram �a� is redundant if
the one-loop polarizations in Fig. 1 are evaluated with dressed
Green’s functions in Eq. �3.6�.
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transversal one in the limit ��m��vFq. However, this singu-
lar renormalization coming from the self-energy insertion is
canceled out with the renormalization coming from the ver-
tex correction, as we now demonstrate. The polarization
bubble with a vertex correction is presented in Fig. 3�b�.
Evaluating this diagram, we obtain

��
R�3b��q,�m� =

1

�
�

k,�m,�
�dk,q

� �2��k,�m
�q,�m�

�G�,k+q/2,�m+�m/2G�,k−q/2,�m−�m/2,

�3.10�

where ��k,�m
�q ,�m� is shown in Fig. 2�b�. We assume and

then verify that �� only depends on the orientation but not
on the magnitude of fermionic momentum k so that we can
explicitly integrate over �k in Eq. �3.10�; this automatically
restricts the �m integral to a range of size �m. We obtain

���
R�3b��q,�m� = i��

−�m/2

�m/2

d�m�
−�

� d�k,q

2�

�
�dk,q

� �2��k̂,�m
�q,�m�

E�m,�m
− vFq cos �k,q

. �3.11�

We now compute ��k,�m
�q ,�m�. Neglecting small bosonic

compared to large fermionic momenta in form factors and
using Green’s functions dressed with the longitudinal self-
energy, we obtain

��k,�m

R�2b��q,�m� =
1

�
�

q�,�m�

�dk,q�
� �2�0��q�,�m� �

� G�,k+q�+q/2,�m+�m� +�m/2

�G�,k+q�−q/2,�m+�m� −�m/2. �3.12�

The integration over the orientation of the bosonic momen-
tum q� is dominated by angles for which one of the two
Green’s functions is on mass shell. Keeping only the contri-
butions attributed to these poles Eq. �3.12� becomes

��k,�m

R�2b��q,�m� =
4i

vF
�

−�m−�m/2

−�m+�m/2 d�m�

2�
�

0

� dq�

2�
�0��q�,�m� �

E�m,�m
− vFq cos �k,q

�E�m,�m
− vFq cos �k,q�2 − 
q�q

m
sin �k,q�2 . �3.13�

The term in the denominator involving sin �k,q is due to the curvature of the FS, i.e., due to the fact that the dispersion
�kF+q=vFq cos �k,q+q2 / �2m�.

Expression �3.13� can be further simplified to

��k,�m

R�2b��q,�m� =
���m+�m/2 − ���m−�m/2

E�m,�m
− vFq cos �k,q

+
��m�

2�kFa�2

vFq�sin �k,q�
E�m,�m

− vFq cos �k,q

1

E�m,�m
− vFq cos �k,q + i

vFq�sin �k,q�
2�kFa�2�

sign �m

�3.14�

with � defined in Eq. �3.4�. The first term on the right-hand
side of Eq. �3.14� is the result for the vertex correction if we
neglect the curvature of the FS. It is proportional to the dif-
ference of longitudinal self-energies at frequencies of the in-
termediate fermions. Substituting this term into Eq. �3.11�,
neglecting E�m,�m

compared to vFq cos �k,q and integrating
over �k,q, we find that it exactly cancels out the renormal-
ization of the polarization bubble coming from self-energy
insertions, Eq. �3.9�.

The remaining term in Eq. �3.14� is attributed to the FS
curvature. It is determined by the pole arising from the pres-
ence of a finite curvature term in Eq. �3.13�, i.e., by putting
the intermediate particle-hole pair on-shell. For its evalua-
tion, one could actually neglect the frequency dependence of
the longitudinal susceptibility, �0� �q�m�. The overall depen-
dence in this term is just the phase space to create a particle-
hole pair. Substituting this term into Eq. �3.11�, again ne-

glecting E�m,�m
compared to vFq cos �k,q, and integrating

over �k,q, we obtain the final result for the leading vertex
correction in the limit ��m��vFq

���
R�3a&b��q,�m� = − b�

4�

�kFa�2

�m
2

�vFq�2 , �3.15�

where, we remind, b�=1 for the longitudinal polarization
and b�=−1 for the transverse polarization.

Note that to obtain this result one could just neglect the
small imaginary part in the denominator in the last line of
Eq. �3.14�. The integral over �k,q is then determined by the
third-order pole 1 / �i0 sign �m−vFq cos �k,q�3 in Eq. �3.11�
once we substitute ��k�m

R�2b� into this formula. This physically
corresponds to putting all four intermediate fermions on
mass shell, the associated phase-space constraint explains the
��m / �vFq��2 dependence in Eq. �3.15�.
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One can straightforwardly check that higher-order vertex
correction terms only contribute higher powers of �m /vFq,
i.e., Eq. �3.15� is the full result for the interaction-induced
renormalization of the polarization bubble to order
��m /vFq�2. For the longitudinal polarization, this renormal-
ization is subleading compared to the ��m� / �vFq� Landau-
damping term. For the transverse polarization, Eq. �3.15� has
the same �m

2 / �vFq�2 dependence as the free-fermion bubble,
Eq. �2.15�, i.e., the exchange by longitudinal nematic fluc-
tuations does affect the prefactor for the transverse polariza-
tion bubble. Still, the correction to the prefactor is small in
1 / �kFa�2 and can therefore be safely neglected.

Note that Eq. �3.15� is independent of the actual fre-
quency dependence of the dressed fermionic Green’s func-
tion, the only thing that matters is that the sign of the dy-

namic part of the dressed G−1�k ,�m� is the same as the sign
of �m. In fact, Eq. �3.15� could be also derived using a qua-
sistatic approximation for the fermion propagator,
G−1�k ,�m� i0 sign �m−�k or using bare Green’s func-
tions, G0, instead of G.

2. Polarizations at arbitrary Ωm Õ (vFq): Ladder approximation

We now extend the analysis to arbitrary �m / �vFq�. To
avoid cumbersome expressions, we restrict the consideration
to the FL regime, ��m���FL

� . The extension to non-FL re-
gime at larger �m is straightforward25 but requires more ef-
forts.

In the FL regime, we can use the FL form of the longitu-
dinal self-energy, ����m�=�i�m, and the one-loop vertex
correction becomes

��k,�m

R�2b��q,�m� =
i�m�

�1 + ��i�m − vFq cos �k,q + i
vFq�sin �k,q�

2�kFa�2�
sign �m

. �3.16�

Higher-order vertex corrections form series in ���k,�m

R�2b��q ,�m��n and remain O�1� when ���m�
vFq. We verified that at
kFa1, which we assume to hold, leading vertex corrections form a ladder series, while nonladder terms are small in 1 / �kFa�
�Ref. 13�. The ladder diagrams form a geometrical series, see Fig. 4, and can be easily summed up. The resulting vertex in the
ladder approximation reads

�ladder�k̂,q,�m� = 1 + ��k,�m

R�2b��q,�m� + ���k,�m

R�2b��q,�m��2 + ¯ =

i�m�1 + �� − vFq�cos �k,q − i
sign �m

2�kFa�2�
�sin �k,q��

i�m − vFq�cos �k,q − i
sign �m

2�kFa�2�
�sin �k,q�� .

�3.17�

The polarizations are now obtained from the diagram with dressed fermion lines and the full vertex, see Fig. 5

���q,�m� =
1

�
�

k,�m,�
�dk,q

� �2�ladder�k̂,q,�m�G�k+q/2,�m+�m/2G�k−q/2,�m−�m/2. �3.18�

For its dynamical part we obtain

����q,�m� = i�m��
0

2� d�k,q

2�

�dk,q
� �2

i�m − vFq�cos �k,q − i
sign �m

2�kFa�2�
�sin �k,q��

� � i�m�1 + �� − vFq�cos �k,q − i
sign �m

2�kFa�2�
�sin �k,q��

i�m�1 + �� − vFq cos �k,q
� . �3.19�

= +

FIG. 4. Ladder approximation for the vertex summing up the
repeated exchange of longitudinal bosons �dashed line�. The curly
line represents either a transverse or a longitudinal boson.

FIG. 5. Polarization containing a vertex in the ladder approxi-
mation, see Fig. 4.

ELECTRON SELF-ENERGY NEAR A NEMATIC QUANTUM… PHYSICAL REVIEW B 81, 235105 �2010�

235105-7



For q=0 and finite �m, this reduces to the density of states,
���=�, as it should be by the Ward identity. At arbitrary
�m / �vFq�, the full ��� can be expressed as the sum of two
terms

����q,�m� = ���
�0��q,�m� +

4�

�kFa�2
 �m

vFq
�2

P�
 i�m

vFq
,�� .

�3.20�

Close to the QCP � is large and the functions P are given by

P��s,�� =
i sign Im s

16�
�

−�

�

d�
d�

2����sin ��
�s − cos ��2�s�1 + �� − cos ��

,

�3.21�

where, we remind, s= i�m /vFq, d����=	2 cos �, and
d����=	2 sin �. At small s, i.e., at ��m��vFq,
lims→0 P��s ,��=−1, and lims→0 P��s ,��=1, and Eq. �3.20�
reproduces the perturbative result Eq. �3.15�. At finite s, there
is an intermediate regime at large � when �s � �1, �s ���1,
where P��s ,��P��s�� becomes a function of s�, i.e.,
P��s���1 /	1+ �is��2. At �s��1� �s��, both �� and �� be-
have as P��s ,���1 / �s��, i.e., the second term in Eq. �3.21�
has the same ��m� /vFq, form as Landau damping, but is sup-
pressed by 1 /�. Finally, for large s we get P��s ,��
�1 / �s3��.

In the non-FL quantum critical regime the computation of
����q ,�m� becomes more complex but a comparison with
the FL result shows that at ����m��vFq and �m�vFq

����q,�m� = ���
�0��q,�m� +

4�

�kFa�2
 �m

vFq
�2

P������m�
vFq

� .

�3.22�

The overall conclusion of the analysis in this section is that,
as long as we approximate the self-energy by ����m�, the
original forms of both polarizations, longitudinal and trans-
verse, are preserved. In particular, neglecting quantitative
corrections that are small in the parameter 1 / �kFa�, the full
���q ,�m� can be safely approximated by Eqs. �2.14� and
�2.15�.

IV. TRANSVERSE FLUCTUATIONS

We now turn to the renormalizations arising from the ex-
change of critical transverse fluctuations, i.e., bosonic nem-
atic modes with momentum q and a polarization transverse
to the corresponding quadrupolar momentum tensor, �ijq

2

−2qiqj. We first analyze perturbative one-loop corrections to
the electron self-energy and the vertex and demonstrate that
they are logarithmically large. Afterward, we sum up the
leading logarithmic singularities and show that the full result
is the appearance of an anomalous dimension of the electron
Green’s function.

A. One-loop self-energy

The lowest-order electron self-energy arising from the ex-
change of a transverse boson is shown in Fig. 6�a�. Follow-
ing the same steps leading to Eq. �3.2�, we obtain for the
transverse self-energy

��
R�6a��k,�m� = − �

0

� dqq

2�
�

−�

� d�m

2�

�0��q,�m�
vFq

� F�� i��m + �m� + ���m+�m
− �k

vFq
� ,

�4.1�

where F� is given by Eq. �2.11� and the index R again indi-
cates that electron Green’s functions dressed with �� were
used for its evaluation. Consider first the contribution ob-
tained by setting external energy and momentum exactly on
the mass shell, i�m+����m�−�k=0. In the low-energy limit,
we approximate F� by its value at a small argument and
obtain

��
R�6a��k,�m��mass shell = 4�

0

� dqq

2�
�

−�

� d�m

2�

�
�0��q,�m�

�vFq�2 ����m+�m
− ���m

� .

�4.2�

The integration over q is straightforward and performing it
and then integrating over frequency, we obtain that one-loop
transverse self-energy on the mass shell behaves as
�m�2/3 / �kFa�4/3 at the lowest energies and as �m

2/3�0
1/3 / �kFa�

at the QCP. �In both limits the �m integral samples the fre-
quency regime where the longitudinal self-energy has the
non-FL form, ����m����m�2/3.� This additional self-energy
correction is smaller than ����m� both in the FL regime and
at the QCP although at the QCP the relative smallness is only
in 1 / �kFa�. We see therefore that mass-shell transverse self-
energy is essentially irrelevant. In fact, we will show in Sec.
IV C 1 below that the full transverse self-energy on the mass
shell is even smaller as ��

R�6a��k ,�m� �mass shell is actually can-
celed by other terms.

The important transversal self-energy Eq. �4.1� is its off-
shell part. Expanding Eq. �4.1� in the distance to the mass
shell, ��=�−� �mass shell, we obtain

(a) (b)

FIG. 6. Lowest order �a� self-energy and �b� vertex correction
due to the exchange of a transverse boson �wiggly line�. The curly
line at the vertex represents either a longitudinal or a transverse
boson.
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���
R�6a��k,�m� = − �i�m + ����m� − �k��

qmin

� dqq

2�

� �
−�

� d�m

2�

�0��q,�m�
�vFq�2

�F�� 
 i�m + ���m+�m
− ���m

vFq
� , �4.3�

where F�� is a derivative of F� with respect to its argument.
The frequency integral is determined by the pole of �0� and
the remaining momentum integral is logarithmically large.
To logarithmic accuracy, the lower boundary of the momen-
tum integral is determined by the distance to the fermionic
mass shell vFqmin��i�m+����m�−�k� such that an expansion
of Eq. �4.1� remains justified. At large momenta, the integral
is cut by the F� function. Effectively, the upper boundary is
given by qmax�1 /a where �m / �vFq�, taken at the bosonic
pole, becomes of order one. In this momentum and fre-
quency range, �m / �vFq� dominates over the difference of
longitudinal self-energies divided by vFq in the argument of
the F�� function, the latter being at most of order 1 / �kFa�
�1. So we can use a small-argument expansion for F�� with
F�� �0�=−4. We then obtain, with logarithmic accuracy

���
R�6a��k,�m� = −

i�m + ����m� − �k

8kFa
F�� �0�

� �
qmin

1/a dq
	q2 + �−2

=
i�m + ����m� − �k

2kFa

� log� EF/�kFa�
max��i�m + ����m� − �k�,�FL�� .

�4.4�

The transversal self-energy thus yields a logarithmically sin-
gular correction to the fermionic residue Z. The logarithm is
cutoff at the scale

�FL �
EF

�kFa�2�
� vF�−1. �4.5�

The relation �FL��−1 is characteristic for the z=1 dynamics
of electrons. The corresponding momentum scale qFL
=�FL /vF��−1. The z=1 scaling actually comes from the up-
per limit of the logarithmical integral for which, as we said,
�m / �vFq���aq�2=O�1�.

B. One-loop vertex correction

We next show that not only the self-energy but also the
vertex correction due to the exchange of a transverse boson
is logarithmically enhanced. The vertex correction is pre-
sented in Fig. 6�b�. It is given by the expression similar to
Eq. �3.12� but with transverse form factors and the transverse
susceptibility instead of the longitudinal ones. The leading
contribution to the transverse vertex correction again comes
from the regime where �m+����m��vFq and the two fer-
mionic Green’s functions can be approximated by their static
forms Gk+q,�m

1 / �−vFq cos �k,q�. Substituting these forms
into the vertex correction diagram, we obtain

��k,�m

R�6b��q,�m� = �
−�

� d�m�

2�
�

qmin

qmax dq�q�

2�
�0��q�,�m� �

� �
−�

� d�

2�

2 sin2 2�

�vFq� cos ��2 . �4.6�

This momentum regime is bounded from below by the dis-
tance to the two fermionic mass shells of the internal fermi-
ons, vFqmin�max��i�m� i�m /2+���m��m/2−�k�q/2��. The
upper bound qmax�1 /a again ensures that the internal
bosonic energy taken at its pole remains sufficiently small.
The remaining integral in Eq. �4.6� is logarithmically large

��k,�m

R�6b��q,�m� =
1

2kFa
log� EF/�kFa�

max��i�m � i�m/2 + ���m��m/2 − �k�q/2�,�FL�� �4.7�

(c) (d)

(b)(a)

FIG. 7. Two-loop fermionic self-energy diagrams with the ex-
change of a transverse �wiggly line� and longitudinal boson �dashed
line�. Diagram �a� is redundant if the one-loop diagram in Fig. 6�a�
is evaluated with a dressed electron Green’s function in Eq. �3.6�.

(a) (b)

FIG. 8. Two-loop fermionic self-energy diagrams with the ex-
change of two transverse bosons �wiggly line�.
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where �FL is defined in Eq. �4.5�.

C. Two-loop corrections

In the next loop order, there are mixed diagrams that in-
volve transverse and longitudinal bosons, and diagrams with
two transverse bosons. For the self-energy, we demonstrate
that mixed diagrams just cancel the dominant term in the
on-shell one-loop self-energy, Eq. �4.2�. We show that the
self-energy and the vertex corrections containing two trans-
verse boson exchanges contribute log2 terms. We also dis-
cuss the cancellation of singular logarithms in the polariza-
tions.

1. Two-loop self-energy with transverse and longitudinal boson
exchange

Consider the two-loop diagrams to the self-energy in Fig.
7 obtained by the exchange of a single transverse and a
single longitudinal boson. Diagram �a� can be disregarded; it
is redundant as we already evaluated the one-loop diagram in
Fig. 6�a� with a dressed Green’s function G�. So we need to
evaluate the remaining three: diagram �b� is a longitudinal
self-energy diagram with a transversal self-energy insertion,
and �c� and �d� are self-energy diagrams with vertex correc-
tions.

Consider first the diagram in Fig. 7�b�. We have

�R�7b��k,�m� =
1

�
�

q,�m

�dk,q
� �2�G�,k+q,�m+�m

�2

� ��k+q,�m+�m

R�6a� �0�,q,�m
. �4.8�

Instead of using the result Eq. �4.4� for ��
R�6a� here, it is

actually more convenient to perform first the angular integra-
tion over the orientation of bosonic momentum q. The result-
ing expression can then be approximated as

�R�7b��k,�m� = 4�
0

� dqq

2�
�

−�

� d�m

2�

�0��q,�m�
�vFq�2

�����m+�m
− ���m

� . �4.9�

The two diagrams in Figs. 7�c� and 7�d� are equivalent and
can be expressed as

�R�7c&d��k,�m� = −
2

�
�

q,�m

�dk,q
� �2��k+q/2,�m+�m/2

R�2b� �q,�m�

�G�,k+q,�m+�m
�0�,q,�m

, �4.10�

where ��k+q/2,�m+�m/2
R�2b� �q ,�m� is given by Eq. �3.14�. To lead-

ing order in 1 / �kFa�, we can neglect the curvature and ap-
proximate this vertex by the first term on the right-hand side
of Eq. �3.14�. To the same accuracy, we can neglect E�m,�m
in the denominator of Eq. �3.14� �i.e., approximate the propa-
gator of an intermediate particle-hole pair in the vertex cor-
rection by a static limit� and also approximate the fermion
Green’s function by its static limit. Applying these approxi-
mations, we obtain

�R�7c&d��k,�m� = − 8�
0

� dqq

2�
�

−�

� d�m

2�

�0��q,�m�
�vFq�2

�����m+�m
− ���m

� . �4.11�

As announced, the sum of the two-loop contributions, Eqs.
�4.9� and �4.11�, cancels the leading term in the dressed one-
loop transverse self-energy on the mass shell, Eq. �4.2�. The
subleading terms are not canceled but they are small and of
no relevance.

2. Two-loop self-energy with exchange of two transverse bosons

We now turn to the two-loop diagrams for the self-energy
containing two transverse boson exchanges, see Fig. 8. We
verified that, to logarithmic accuracy, the self-energy dia-
gram �a� is dominated by the regime where the momentum
of the inner transverse boson is larger than the momentum of
the outer one. Using the one-loop result Eq. �4.4� for the
internal self-energy, we obtain

�R�8a��k,�m� =
1

2kFa

1

�
�

q,�m

�dk,q
� �2G�k+q,�m+�m

�0�q,�m

�log� EF/�kFa�
max��i�m + i�m + ���m+�m

− �k+q�,�FL�� .

�4.12�

Diagram �b� has two dominant contributions: from the re-
gime where the first boson is larger than the second one and
vice versa. Both contributions can be re-expressed via the
one-loop vertex correction due to transverse boson exchange.
Using Eq. �4.7� for this vertex correction we obtain

(a) (b) (c)

(f)(e)(d)

FIG. 9. Two-loop vertex corrections with exchange of two trans-
verse bosons �wiggly line�.

(a) (b)

FIG. 10. Correction to the polarizations due to the exchange of
a transverse boson �wiggly line�. The external curly line represents
either a longitudinal or transverse boson.
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�R�8b��k,�m� = −
1

kFa

1

�
�

q,�m

�dk,q
� �2G�k+q,�m+�m

�0�q,�m

�log� EF/�kFa�
max��i�m + i�m + ���m+�m

− �k+q�,�FL�� .

�4.13�

Observe that the “vertex” diagram �b� thus gives twice the
contribution of the “self-energy” diagram �a�, see Eq. �4.12�,
and is of opposite sign. The two diagrams then partially can-
cel each other, and the full result is one-half of �R�8b��k ,�m�.

For the remaining integration, we focus on the off-shell
part and expand the Green’s function to linear order in the
distance to the mass shell. The integration over frequency
�m is dominated by the bosonic pole of the transverse sus-
ceptibility. The leading contribution to the momentum inte-
gral comes from the region where the momentum compo-
nent, q�, perpendicular to the external fermionic momentum
is much larger than �−1. In this regime, the integrand depends
on the longitudinal component, q�, only via the form factor,
�dk,q

� �2=8q�
2 q�

2 / �q�
2 +q�

2�2, and the integration over q� is eas-
ily performed. The final integration over q� then reduces to
�dq� /q� log q�. Collecting the prefactors, we then obtain a
log2 correction to the residue Z

��R�8a&b��k,�m� =
i�m + ���m

− �k

2�2kFa�2

� log2� EF/�kFa�
max��i�m + ����m� − �k�,�FL

� �� .

�4.14�

3. Two-loop vertex correction

We next consider logarithmic singularities in the vertex
correction at two loop order, arising from the exchange of
transverse bosons. The corresponding diagrams are presented
in Fig. 9. We find partial cancellations between the contribu-
tions, similar to the cancellations between the two-loop dia-
grams for the self-energy. Using one-loop results for the dia-
grams in Fig. 6, we obtained that the diagrams �a� and �c�
with self-energy insertions cancel the diagrams �b� and �d�
with vertex correction insertions. Out of two remaining dia-
grams, the important one is the diagram �e� with the two
ladder-type vertex corrections. For the inner vertex correc-
tion we can use the one-loop result in Eq. �4.7� and the
remaining integrals are evaluated in a manner similar to how
Eq. �4.14� was obtained. Performing the calculation, we
obtain

��k,�m

R�9e��q,�m� =
1

2�2kFa�2 log2� EF/�kFa�

max��i�m �
i�m

2
+ ���m��m/2 − �k�q/2�,�FL�� . �4.15�

The remaining diagram �f� does not have a log2 term—it
vanishes after the integration over the direction of bosonic
momenta. As a result, Eq. �4.15� is the full result for the
vertex correction at two-loop order.

4. Polarization corrections

Because the exchange of transverse bosons leads to loga-
rithmic singularities in the electron self-energy, the question
arises whether it affects similarly strongly electron polariza-
tions. If it does, logarithmical renormalizations of the self-
energies and the polarizations have to be analyzed self-
consistently and in parallel. We show, however, that this is
not the case. In the evaluation of the self-energy we have
already witnessed a partial cancellation of logarithmic singu-
larities arising from self-energy insertions and vertex correc-
tions. We demonstrate below that in the polarization bubble,
self-energy and vertex corrections due to a transverse boson
exchange conspire so that singular logarithmic terms are ex-
actly canceled out.

The polarization bubble with transverse self-energy and
vertex corrections is shown in Fig. 10. Expressing each of
the two diagrams in terms of fermionic and bosonic propa-
gators and performing calculations in the same way as before

we find that each diagram is logarithmically divergent. How-
ever, comparing them, we find after simple manipulations
that the integrands are identical and only differ in the overall
sign. The issue is then the interplay between the combinato-
rial factors for the two diagrams. The self-energy can be
inserted into the upper or the lower fermion propagator
hence the diagram �a� has a combinatorial factor of 2. The
vertex correction diagram �b� does not contain this factor,
however, the logarithm in this diagram comes from the re-
gion where the internal momentum carried by the transverse
boson is sufficiently large such that one of the two virtual
particle-hole pairs, either before or after the boson exchange,
is far away from its mass shell. This implies that the loga-
rithm in the diagram �b� comes from two distant regions and
this exactly compensates the combinatoric factor of 2 in the
diagram �a�. As a result, the logarithmic singularities from
vertex and self-energy insertions to the polarization bubble
cancel out, and there is no need to redo the calculations of
logarithmical self-energy and vertex corrections.

D. Renormalization-group equations

So far, we have found singular logarithmic renormaliza-
tions of the electron residue Z and the vertex due to the
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exchange of transverse bosons in one- and two-loop orders.
The two-loop renormalization is exactly 1/2 of the square of
the one-loop renormalization. One can attempt to go beyond
perturbation theory and sum up the leading logarithmic cor-
rections up to infinite order. The interplay between one-loop
and two-loop renormalizations is a good indication that the
system is renormalizable such that one can apply a
renormalization-group �RG� treatment. For this purpose, we
introduce a running residue Z for the electrons and a running
vertex �, defined at a certain energy scale D. Applying a
standard procedure of integrating out high-energy degrees of
freedom, one obtains RG flow equations for Z and �

��1/Z�
� log D

=
1

2kFa
Z�2, �4.16�

��

� log D
=

1

2kFa
Z2�3. �4.17�

The flow, Eq. �4.16�, follows from the one-loop result for the
self-energy, Eq. �4.4�, after taking into account that a renor-
malized electron propagator and the renormalized two verti-
ces in Fig. 6�a� yield an additional factor Z�2. Similarly, the
RG Eq. �4.17� follows from Eq. �4.7� upon evaluating the
diagram 6�b� with renormalized propagators and vertices.
The flow starts at an energy scale D0�EF / �kFa� and is cut at
either the distance to the fermionic mass shell or at the scale
�FL of Eq. �4.5�. The initial conditions for the RG equations
are Z�D0�=1 and ��D0�=1.

One can easily verify that the combination �Z is an in-
variant of the RG flow

�Z = 1. �4.18�

This invariance is the manifestation of the cancellations be-
tween vertex and self-energy corrections which we observed
in the explicit computations above. In particular, the condi-
tion �Z=1 ensures that the polarizations �� remain un-
changed by the RG flow. Indeed, in the calculations with
logarithmical accuracy, one can select a cross section with
the smallest energies and add self-energy renormalizations
and independent renormalizations of the vertices on both
sides of the selected cross section �this is how we get an
overall factor of 2 for the diagram 10�b� in the previous
section�. This implies that the dressed diagram for the polar-
ization bubble differs from the bare one by ��Z�2 and is
obviously not renormalized.

We emphasize that the relation �Z=1 is valid to logarith-
mic accuracy, i.e., only the logarithmically singular parts of
the self-energy and vertex correction cancel. Nonlogarithmic
self-energy and vertex renormalization terms do not cancel
but are small in our theory 1 / �akF�. Exact cancellations due
to Ward identities only arise in the limit of small momenta
q /�→0. We are considering, however, the opposite limit of
small frequencies, � /q→0, when there is no exact cancella-
tion between self-energy and vertex diagrams.

Using �Z=1 the flow equation for the residue Z can be
simplified to

�Z

� log D
= −

1

2kFa
Z . �4.19�

This equation is easily solved and we finally obtain for the
electron Green’s function

G�k,�m� =
Z���

i�m + ����m� − �k
, �4.20�

where the energy-dependent factor Z��� is given by

Z��� = � 
D0

�
�−��

if��� 
 �FL


 D0

�FL
�−��

if��� 	 �FL
� �4.21�

with ��=1 / �2kFa� and D0�EF / �kFa�. At the QCP

G�k,�m� �
D0

−��

�i�m + ����m� − �k�1−��
. �4.22�

The form of the electron Green’s function close to a nematic
QCP, given by Eqs. �4.20�–�4.22�, with the longitudinal self-
energy �� defined in Eq. �3.3�, is the main result of this work.
Separating real and imaginary parts of G, we obtain Eqs.
�1.1� and �1.2� presented in the Introduction.

We emphasize that the Green’s function contains the two
energy scales �FL

� �EF / ��kFa�4�3���−3 and �FL
�EF / ��kFa�2����−1 The self-energy �� evolves at ��m�
��FL

� from a FL form at ��m�	�FL
� to a non-FL form at

��m�
�FL
� . In addition, the Green’s function develops an

anomalous dimension �� if the distance to the mass shell
exceeds the energy �FL. For kFa1 which we assumed to
hold, this anomalous dimension �� is small.

V. SUMMARY AND DISCUSSION

We analyzed the electron Green’s function in an isotropic
metal in two spatial dimensions, close to a nematic QCP at
which the Fermi sphere spontaneously develops a quadrupo-
lar moment. The hallmark of this quantum phase transition is
the presence of two critical bosonic modes representing two
quadrupolar polarizations. These two modes are character-
ized by different dynamics. Whereas the polarization longi-
tudinal to the quadrupolar momentum tensor is damped by
particle-hole pairs in a metal and has the dynamical exponent
z� =3, the transverse mode remains undamped with z�=2.5

The self-energy correction due to the longitudinal fluctua-
tions, ��, has been investigated before.5–7,10,13,18–20 At one-
loop order, its singular part depends only on frequency and
acquires a strong non-FL form, ����m���m

2/3, for frequen-
cies larger than ��m�
�FL

� ��−z�, where � is the correlation
length of the transition. In the present work, we focused on
the modifications of the electron Green’s function due to the
exchange of transverse bosons. We performed a systematic
perturbative analysis within an effective Eliashberg-type
theory which operates with electron propagators already
dressed by the one-loop longitudinal self-energy ��, see Eq.
�3.3�. This effective theory has to be treated with extra care
as it possesses spurious divergencies.12 For example, the
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transverse polarization at the one-loop order does not repro-
duce the original z�=2 dynamics of the transverse fluctua-
tions. However, these divergencies are compensated by terms
in the perturbative expansion which are formally of higher
order in the number of loops and the fully renormalized
bosonic propagator preserves z=2 dynamics. This has been
first established in a perturbation analysis in Ref. 12. We
extended that analysis to higher orders and also included into
consideration the curvature of the FS. We found that spurious
divergencies indeed cancel out at all orders and the curvature
does not affect the cancellation. We found similar cancella-
tion of transverse renormalizations for the fermionic self-
energy at the mass shell.

Our key result is the discovery that the exchange of a
transverse fluctuation leads to a singular logarithmic correc-
tion to the residue Z of the electron Green’s function already
at one-loop order. The logarithm is cut by either the distance
to the mass shell or by the energy scale �FL��−1, whichever
is larger. The appearance of the energy scale inversely pro-
portional to � is an unexpected result because transverse
bosons have z�=2 and scaling arguments suggests that a
characteristic energy scale set by the transverse mode is
�FL

� ��−2. This scale has manifestations in thermodynamics12

but we found that it is unimportant for the renormalization of
Z arising from transverse boson exchange �see, however, the
remark below on the renormalization of ��. The reason is that
the logarithmic enhancement of Z comes from the region of
the phase space where the transverse bosonic propagator is
near its pole, i.e., �m�vFq� �aq�, and the upper limit of the
1 /q behavior of the integrand for Z is q�1 /a in which case
�m�vFq. The lower limit is �−1 and the interplay between
the two limits yields the z=1 scaling of �FL.

We also found, at one-loop order, a singular logarithmic
correction to the vertex �. We extended the calculations to
two-loop order and found log2 terms, both for the self-energy
and the vertex. We then applied RG strategy and obtained
flow equations for the running Z and �. We found that the
flow equation satisfies Z�=1 and also verified this result in
explicit calculations to two-loop order. The condition Z�
=1 implies, in particular, that bosonic polarizations remain
unaffected by logarithmical singularities although individual
self-energy and vertex corrections to the polarization bubble
are logarithmically singular.

The solution of the RG equations yields our main result:
an electron Green’s function at the nematic QCP develops
the anomalous dimension ��=1 / �2kFa�, where kF is the
Fermi momentum and a is a quadrupolar scattering length.
The fully renormalized Green’s function is given by Eq.
�1.1�. Away from QCP the anomalous dimension persists if
the distance to the mass-shell exceeds the energy scale �FL
��−1. The anomalous dimension is detectable in, e.g., MDC
ARPES measurements, see Eq. �1.2�.

There are additional logarithmically singular corrections
in the theory that we neglected in our treatment for simplic-
ity. First, it was recently argued by Metlitski and Sachdev,19

and Mross et al.20 that the longitudinal fluctuations also con-
tribute a logarithmically singular correction to the fermionic
propagator but only in three-loop order. It is an interesting
open question as to how these additional logarithms exactly
affect the renormalization-group flow of the full theory and,
more importantly, whether they modify the z�=2 dynamics
of the transverse fluctuations or not.

Second, in the mean-field theory the correlation length is
given by ��1 /	1+gc,2, where gc,2 is the n=2 charge Lan-
dau parameter which approaches gc,2→−1 at the QCP. As
shown in Ref. 12, � by itself acquires logarithmic corrections
when the self-interaction of nematic fluctuations is taken into
account. In our present analysis, we also neglected these lat-
ter logarithmic corrections. We expect that the additional RG
flow for the correlation length is decoupled from the flow of
the fermionic residue, Z, so that only the expressions for the
crossover energies �FL and �FL

� are affected. Nevertheless,
due to this flow of � the frequency dependence of the residue
of the Green’s function should become sensitive to the so far
elusive energy scale �FL

� ��−z�.
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